Rebalancing Regional and Remote Australia

A vision for a global carbon sink while creating sustainable communities

Alberto Troccoli^{1*}, Roger Stone², Ugo Bardi³, Christian Breyer⁴ and Chris Henggeler⁵

¹World Energy and Meteorology Council, Norwich, United Kingdom and Brisbane, Australia & Inside

Climate Service srl, Padova, Italy

² Speedbird Climate P/L Brisbane and Toowoomba, Australia

³ The Club of Rome, Lagerhausstrasse 9, 8400 Winterthur, Switzerland & Università di Firenze, Florence,

Italy

⁴LUT University, Yliopistonkatu 34, Lappeenranta, Finland

⁵ Kachana Pastoral Company PL, Durack, WA, Australia

* Corresponding author

E-mail: alberto.troccoli@wemcouncil.org

Supplementary Material

Figure S1 shows a pictorial representation for the vision of the Rebalancing Regional and Remote Australia plan as captured by the change in Australian landscape over a nominal period of 100 years.

Figure S1: Vision for the **Rebalanced Regional and Remote Australia** plan, depicting the transformation of the Australian landscape over a '100 year' timeframe. Left: '2020' current situation; right: target '2120' vision. Dark green: fertile tropical area. Light green: fertile sub-tropical and temperate areas, including rebalanced land, from semi-arid/arid to fertile. Yellowish: grassland/marginal areas. Orange: desert. It is assumed that around 45% of the current agricultural marginal areas can be regenerated into fertile land, and around 10% of desert into grassland.

 Table S1 outlines the foundational assumptions for constructing the budget of the pilot project summarised in Table 1.

 These include:

- i) Energy and water requirements are based on current overall national consumption, thereby providing a scalable and adaptable framework for the project's resource demands. This approach, however, may lead to an overestimation of future demands (i.e., conservative estimates) due to potential improvements in efficiencies.
- ii) The energy mix transition aims for a future configuration of 70% solar PV and 30% wind power. This target mix considers that the current renewable energy contribution to the primary energy consumption is less than 10% and is chosen to optimize sustainability alongside energy reliability and security.
- iii) The water supply strategy envisages 85% of water to be sourced from desalination processes, complemented by 15% from conventional sources such as rivers and groundwater. This distribution represents a balanced approach to resource utilization, emphasizing both innovation in water sourcing and the preservation of natural water cycles. This is particularly relevant given the project's extensive use of water for natural climate solutions.
- iv) The majority of the land allocation within the project scope comprises 70% forests and 30% grasslands. This distribution is strategically designed to enhance carbon sequestration capabilities and to foster biodiversity through natural climate solutions.

It is critical to note that these estimates are conservatively calculated to ensure a robust foundation for the initiative. They are intended as initial guidelines, with the anticipation that more detailed feasibility studies will refine these figures, particularly in response to specific local conditions and evolving technological landscapes.

Although the potential implications and risks associated with these activities have been considered, a comprehensive risk register table is beyond the scope of this perspective paper and will be included in a subsequent feasibility study. A comprehensive life cycle assessment (LCA) will also be conducted, including the decommissioning of solar panels and end-of-life technologies. While we have not accounted for all engineered approaches to carbon dioxide removal, such as carbon capture, use, and storage as mentioned in the Climate Change Authority (CCA, 2023) report, these approaches are not necessarily inconsistent with our strategy. Moreover, the role of recently established agencies or initiatives will be accounted for in the planning phase. For instance, the newly established Australian Net Zero Authority (May 2024), which focuses on reskilling jobs from fossil fuels to renewables, will be considered in the implementation phase.

Reference

Climate Change Authority (CCA) 2023 <u>Reduce, remove and store: The role of carbon sequestration in accelerating Australia's</u> <u>decarbonisation</u> Available at: https://www.climatechangeauthority.gov.au/sites/default/files/2023-04/Sequestration%20Insights%20Paper%20-%20Publication%20Report.pdf **Table S1**: Main assumptions used for the **Rebalancing Regional and Remote Australia** budget shown in **Table 1**. Water use and energy use are based on current national overall use divided by the total population.

	Fixed	Annual
GENERAL		
Population density for pilot	250 people/km ²	
Fraction of water produced by desal	85%	
Fraction of other water supplies (rivers, aquifers, storage)	15%	
Fraction of energy generated by solar PV power	70%	
Fraction of energy generated by wind power	30%	
Area for natural climate solutions	10000 km ²	
of which, Forest	70%	
Grassland	30%	
WATER		
Water use (total consumption, person)		730000 L/person
Water use (afforestation)		100 ML/km ²
Water use (grassland)		250 ML/km ²
Average precipitation (grassland areas)		0.45 m
Water efficiency	30%	
Desalination: CAPEX/OPEX	1.5 A\$/kL	0.5 A\$/kL
Water storage: CAPEX/OPEX	3 A\$/kL	0.9 A\$/kL
Pipeline		
Pipeline cost	1000 A\$/m	
Pipeline length	200 km	
Water for Food		500 ML/km ²
ENERGY		
Energy use (total supply, person)		64 MWh/person
Solar PV Power (utility-scale)		
CAPEX/OPEX	0.7 A\$/W	1.5% of CAPEX
Capacity factor	0.25	
Wind Power		
CAPEX/OPEX	2 A\$/W	3.5% of CAPEX
Capacity factor	0.3	
Transmission lines		
Transmission lines cost	2000 A\$/m	
Transmission lines length	500 km	
Power for desalination	4.5 kWh/m ³	
Electrical storage (batteries)		
Cost of batteries: CAPEX/OPEX	0.15 A\$/Wh	2.5% of CAPEX
Duration of storage	6h	
Share of storage of annual generation	20%	
FOOD		
Land Acquisition Costs	150000 A\$/km ²	
Fertilizers		
Amount		20000 kg/km ²
Cost		500000 A\$/kg
Seeds		

Amount		400 kg/km ²		
Cost		40 A\$/kg		
Machinery: CAPEX/OPEX	30 million A\$	3 million A\$		
Labour Requirements and Costs				
Labour	1.5 person/km ²			
Cost		30 A\$/hr		
Storage Costs		50 million A\$		
Distribution and Retail Costs		50 million A\$		
INFRASTRUCTU	URE			
Land Acquisition Costs	200000 A\$/km ²			
Construction Costs				
Residential: CAPEX/OPEX	1000 A\$/m ²	150 million A\$		
Office: CAPEX/OPEX	1500 A\$/m ²	125 million A\$		
Amenities and Services: CAPEX/OPEX	2000 A\$/m ²	100 million A\$		
Roads and Transportation Infrastructure				
CAPEX/OPEX	1 million A\$/km	125 million A\$		
Water and Sewerage System Costs	12500 A\$/person			
NATURAL CLIMATE S	OLUTIONS			
Reforestation and Afforestation				
Number of trees per unit area	50000 trees/km ²			
CAPEX/OPEX	200000 A\$/km ²	15000 A\$/km ²		
Conversions to tCO2				
Cost	400 A\$/tCO2eq			
Water demand	400000 L/tCO2eq			
Land demand efficiency	2000 km ² /tCO ₂ eq			
Grassland				
CAPEX/OPEX	40000 A\$/km ²	4000 A\$/km ²		
GREENHOUSE G	ASES			
Energy emissions				
Coal (34% of 2022 energy mix)	1000 gCO2eq/kWh			
Oil (32% of 2022 energy mix)	840 gCO ₂ eq/kWh			
Gas (26% of 2022 energy mix)	480 gCO ₂ eq/kWh			
RE mix (8% of 2022 energy mix)	40 gCO ₂ eq/kWh			
Sequestration				
Forests		2500 gCO ₂ eq/m ²		
Grassland		200 gCO ₂ eq/m ²		
Carbon Price	20 A\$/tCO ₂ eq			
INCOME				
Average Household Income		80000 A\$		
Disposable Income	75%			
Average Household	2.6 people			
Tax Revenue	30%			
Amount spent by households as % of disposable income	85%			
SPACE				
Water storage	1 km ³ /GL			
reservoir depth	5 m			

Desalination Plant	0.2 km ² /GL/day	
Solar PV power Farm	0.01 km ² /MW	
Wind Power Farm	0.0005 km ² /MW	
Gas Power Plant	0.001 km ² /MW	
Food	1000 m ² /person	
Land city pilot	400 km ²	
Residential space	35 m ² /person	
Office Space	10 m ² /person	
Amenities and Services	15 m ² /person	
Land for recreation	25 m ² /person	
Road network	1.5 km/km ²	